Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Who Is Worst Off?: Developing a Severity-scoring Model of Complex Emergency Affected Countries in Order to Ensure Needs Based Funding
Department of Public Health Sciences, Health system and policy, Karolinska Institute.
Röda Korsets Högskola, Avdelningen Teknik och Välfärd.
ERRB, Centers for Disease Control, Atlanta, Georgia, USA.
Department of Public Health Sciences, Health System and Policy, Karolinska Institute.
2015 (Engelska)Ingår i: PLOS Currents, ISSN 2157-3999, E-ISSN 2157-3999, nr November 3Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: Disasters affect close to 400 million people each year. Complex Emergencies (CE) are a category of disaster that affects nearly half of the 400 million and often last for several years. To support the people affected by CE, humanitarian assistance is provided with the aim of saving lives and alleviating suffering. It is widely agreed that funding for this assistance should be needs-based. However, to date, there is no model or set of indicators that quantify and compare needs from one CE to another. In an effort to support needs-based and transparent funding of humanitarian assistance, the aim of this study is to develop a model that distinguishes between levels of severity among countries affected by CE.

Methods: In this study, severity serves as a predictor for level of need. The study focuses on two components of severity: vulnerability and exposure. In a literature and Internet search we identified indicators that characterize vulnerability and exposure to CE. Among the more than 100 indicators identified, a core set of six was selected in an expert ratings exercise. Selection was made based on indicator availability and their ability to characterize preexisting or underlying vulnerabilities (four indicators) or to quantify exposure to a CE (two indicators). CE from 50 countries were then scored using a 3-tiered score (Low-Moderate, High, Critical). 

Results: The developed model builds on the logic of the Utstein template. It scores severity based on the readily available value of four vulnerability and four exposure indicators. These are 1) GNI per capita, PPP, 2) Under-five mortality rate, per 1 000 live births, 3) Adult literacy rate, % of people ages 15 and above, 4) Underweight, % of population under 5 years, and 5) number of persons and proportion of population affected, and 6) number of uprooted persons and proportion of population uprooted.

Conclusion: The model can be used to derive support for transparent, needs-based funding of humanitarian assistance. Further research is needed to determine its validity, the robustness of indicators and to what extent levels of scoring relate to CE outcome.

Ort, förlag, år, upplaga, sidor
2015. nr November 3
Nationell ämneskategori
Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologi
Identifikatorer
URN: urn:nbn:se:rkh:diva-1966PubMedID: 26635996OAI: oai:DiVA.org:rkh-1966DiVA, id: diva2:871951
Tillgänglig från: 2015-11-17 Skapad: 2015-11-16 Senast uppdaterad: 2017-12-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

PubMedhttp://currents.plos.org/disasters/article/who-is-worst-off-developing-a-severity-scoring-model-of-complex-emergency-affected-countries-in-order-to-ensure-needs-based-funding/PMC Full text

Sök vidare i DiVA

Av författaren/redaktören
Ohlsén, Ylva Kristina
Av organisationen
Avdelningen Teknik och Välfärd
I samma tidskrift
PLOS Currents
Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetricpoäng

pubmed
urn-nbn
Totalt: 73 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • harvard-anglia-ruskin-university
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf